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USING THE QUATERNIONS Tp COMPOSE ROTATIONS .

1. INTRODUCTION

. . This unit pplies lihear algebrakic methods to solve
ea
an easily stated problem: Suppose an object in a

/
fhree-

jiimensional coordinais4ystem is first'notptedlabout a '

'given aXis through the origin by .giyen-angie, and then
.

rotated about another axis throUgh the drigiavbF another
angle. Is there straightforward way to calculate the

,4'conkbined result of the two rotations? Fof example; are

there fOrmulas tht describe t.he.respkt iri terms' of the
/ .

two axis of rotation and the two angles? It turns out

that the answer is yes, as we shall see.

1

Figure 1. Rotations of an object about different axes
through the Origin.

. .

Although this, is an in*resting question to answer,
1

tqgmethod by whichwe will answer it is more interesting

still. For, in considering rotations in Euclidean three

dimensional space R 3 , we embed R3 ia she fourdimensionat
space R. In R

4
there is a vector,producl Which

generalizes, the cross prOduct in R3 and which is intimately
related to rotations in R 3 .

We define a-rotation in as as a rotation-about a

fixed axis vector n by a given, angle 8. The vector n is

4

assumed to emanate froethe coordinate origin, and we
3

' hold to this assumption *throughout the unit. The sense of
rotation is this: If the right -hand thumb points in -the'

direction of n,.tlen the fingers curl i the direction of

rotation; and only vectors perpendicular to n are rotated.

We will take the axis of rotation n toi6e a unit vector..
- Notice that the rotation about n by angle 6 rs the sAme

as the rotation about -n.hy angle 27-e.
$

A rotation is a Zinear operator on R. That is, if

° 444-4eriotes the vector obtained by rotating u about n
by angle Q, then

R(u + v) = R(u) + R(v), and '12(ru) = rR(u) ,

for any vectors u and v and scalar _r. To see that

R(u + v).= R(u) + R(v), for example, note thatll + v is

a diagorial of-the parallelogram determined by u and v.

After the rotation, the corresponding diagonal of the

parallelogram determined by R(u) and R(y), namely
R(u) + exactly the diagonal Of thJLorigina"1.

parallelogram rotated, R(u t v). See Figure 2.

14(v)

o-

Figure 2. Under a rotation w in R3, the image of the sum
of two vectors u and v is the image of their sum.

Similarly, changing the length (and perhaps the. .

direction) of a vector by multiplying the vector by a

scalar r, Whether performed before or after therotation,
yields the same result, Thus R(ru) =rR(0). Consequenttf,
a rotation is a linear operator.
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-It is convenient, to express rotations by using a

"right hand" set of orthonormal vectors in R3 Let n be

. thO unit Vector defining the axis of rotation as above.

LetU and v each be unit vectors so that u, v, n, are

mutually perpendicular, with cross product u x v = n.

Then the rotation about n by angle 6 is given by

R(n) = n
,

R(u) = cos 6 ,uu. + sin 6 v

12() =,1sin 6 u + cos 6 v

in the basis '1.1,v,n of R3. See Figure 3.

V ,

(a)

U

R()

Figure 3. (a) Three mutually orthogonal vectors u, v. and a,
pictured with n pointing out of the page. (b) A rotation R

. about n by an angle 6 (shown here1s a small positive angle)
moves u to R(u) and v t4,R(y).

/. CONTEXTS IN WHICH ROTATIONS ARE COMPOSED

Me now indicate two contexts in whichapplications

'of compositions of rotations occur.. '

'For thefirst context, conside'r two reference

framesan unprimed one with axesx, y, -and z and a

primed reference frame with axes x', y', and z' Assume

that each is a right-hand Cartesian.frame. That is, in

each the y, and z axes are mutually /perpendicular with

the positive z axis obtained bythe right-hand rule from-

the x aid y axes as in several variable calculus. Assume

3.

that the axes axe all marked off with the same units, and

that the coordinate origin4- of the two systems coincide.

Let i, j, k and i', j', k' be the unit vectors along the

x, y, z axes, respective'ly, in each system.* Then there

exists a rotation R that takes i to i', j to j4, and k to
-- nM

k'. That is, '

= R(i) = R(j) k' = R(0.

To see that such a rotation exists let S be any rotation

with S(s) = , Now rotate around the axis S(i) =

until S(j) and S(k) coincide respectively with j' and k':

Call this new rotation T. Then thecomposition of T and

S yields

ToS(i) = f'
MA MME

See Figure 4.

k'

ToS(j) = j' :ros(k) = k'..

k' = TrS(k)]

S(k).

ND ..i'

I%
'.. NI

1.

,..., ,..,

( c )

Figure 4. .The rotation S about the origintakes i to
as shown in parts (a) and -(b): Then, the rotation T about
the origin takes S(j )Jo 3' and S(k)

is - T[S( )]

Now, the composition sofq..rotations about axes that pass

through a commorpoint is tself a rotation (a .direct

consequence of Tbeorem 3 of Section 10 below), so that ToS

is ,the desired rotation R. Thus we have the result t4lat_

given any two right-hand Cartesian coordinate systems

whose origins coincide, there exists a rotation which

maps the x,'y, .z axes in onesystetAnto the corresponding
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axes'in the second system: tvrther, the positive sense
, .

' each axis is preserved.

how consider three right-hand Cartesia -coordinate

systems whoSe origins-coincide. 411 them unpriMed,

,primed and`doubly primed. Suppose we know a rotation

taking the uriprimed system to the primed system, and also
/ ,1

'a rotation taking the primed to the doubly primed. That
° is, let

1
and R

2
.be xhe-rotations so that

= R
1

(1.) j' =, R1 01, 10 .-eR ,...
.

i" = r" =s112(j1), a k" = R2(k').

-Then the transformatiOn,tak ing the,unprimed axes to the

doubly primed axes is the, cbmposition of the rotations:

i"-= R2 °R1(i), j" = R20111(j),, k" =,R2111(k):. .*P.°t4.
As another context in which,it wduld be useful to

know how to compose rotations, consider an object which is

rotating about two-Axes siMultanqously. A-spiingbdard
diver .who is twisting and spinning ai .the sAme time

exhibitssuchbehavidr.So does the orbiter shown inbehaviors

FfgureS. To be specific, cOnsider.a ,cylinder whose axis

initially lies along the x-axis-and whose center of mass.
- lies at the origin (Figure 6). Suppose the cylinder is

rptatitabout this axis so that attime,t 'the total

angle t .which the cylinder, has rottedjs-6(t),

- (For "uniform" rotation, 6(t) = ctfot,:shme conit&nt c.)

Now suppose that the,cylinder,is also rotating about the

.z-axis so that at, time t pip *tdta3angle of rotatiini is

..V(t).. Let Rt denote the rotation about the x-axlis by -

angle At) *and St denote' the rotation about the' z -axis by

angle (POO. Thena.point on the cylinder whose positioh

u = xi + yj + z1 at time 0% will beat StoRt(e at time
t. That is, the location of u after t pits of time have

elapsed is found by first spinning about the x-axis and
.

then about the z-axis even though in reality the two

rotations occur simultaneously.' -5

.. .

4..

j
ar

,

.
Flight mode

9r"
-zi f

.

Gravity gradient
rfr stabgned

Y-POP Xnadir
-CC-Prs '

iPOP, Xnadt, 1,.6.41...a.
-

Oust; inertial
(selected inertial
attitude/attitude
rate

YPOP tb-r-1.-.,

ZPOE' .1-..9..6.

'
Y and Lrk

. Orbiter axes. Sketchal at
left show which axis Is perpen-
diculartothe-orbltplihe (SOP, 9
the CifCles) In o orientations

. toward Earth. When gravity-
stabilized, an orbiter's Aose
always faces Eirth. When drift-
ing quasiintrilal, the urns
surface` always faces the Sun,
useful to keep hear radiators
on top out ordlrect sunlight.

\Figure 5. Orbiter.
s I

(Source: Air and Space,'Volume 2, No:" 3, Jan.-Feb. 1979,
page 6.) .N\ .

10
1;

. .

,6

10
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Rotation S
t Zotation St-

RotatioV.
R
t -1 .

u = xi +yj+ zk
.... ... .... ....

(a) Position of u at
time t'= 0.

Rotation R
t

Si 0 R
t
(u)

(b) Position of '11 after R and
S have acted simultaneously
for t units of time.

Addition is defined componentwise just as in linear
algebra. To define the multiplication, we give the rules"Figure 6. The ain't u isAnalied by the rotations Rt and St,

described in the text. Its position may be found by
spinning first about the x-axis, and then about the z-axis.

p.

(1,0,0,0) with 1

(0,1,0,0),with i

(0,0,1,0) with j

(0,0,0,1) with k.

We will denote scalars by lowercase letters a, b, c, and
d. Vectors either in R3

or R
4
will be denoted by the

'lowercase letters p, q, u, v,i, j, and k. A vectorof
^01

the form ,u 5.1 ± bi + ck' can be, thought to be either
inn R 3-

ior in R 4
(as u = 0 t ai + bj + ck). However,, in

performing the cross product 11 x v, both u and v must be
in 123.' 'A quaternion of the form (a,0,0,0) = al will

bedenoted just by a.

4, ADDITION AND MULTIPLICATION
'

fox multiplying the bgsis vectors1, i, j, k and then
"extendihg by linearity." These products are Igo

i
2

=
MA ..ii = -19 a 1AS, j 1.2. M. 1

,

.

3. THE QUATERNIONS
.

) = -1 1...q.= = -ik,
.2

.....,, ..., .
$

Four-dimensidnal Euclidean space R can be given a
.:

4

15.

2-
-1, jic = i = -kj.

\
.... .....s.:producf functforn with this product'R4 is called ,the

The vector 1 = (,1,0,0,0) is to behave as a'multiplicative%quaterniona,.and denoted by the letter Q. The essential unit. That isl
.'fgature'of this product is that it permits

--
a kind of

division, whereas,sthe cross product in R
5-

doeS*rnot. Let
lq= c1 = c1 19

us begin by lendiing an elemehtja,b,c;dflOf R4 by
e

, for any quaternion q.
a++ bi + cj + dk, just as in R3 the element (b',d) is '.. .... N. emen ,c

r.1.

Example: To find the p;odUct of 2+3i and -1,*6k, weoften denoted'br 131.'4 cj + dk. In this way we may embed
,

....,... ..., Po" .

.'jwriteR3 in R4'A-- Q as the last three coordinates.' In ilarticu +. jRk' .
. ,

lar we Maylidenitify the vectors obi left Side of .the . (2 + 3i)(:1 # 6RL= 2(-1) + 2(6k),+ '3i(-1) + 3i(6k).. ,
...., ... ... ....,

.

..-
.followingltable with the,symbols pn the right:

'?*.,.. '; " = -2 +1,1k - 3i + 18ik.
.-

µMM ...
'

...,.

i2 = -2 - 18j'+ 12k.
8

7
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Show that the complex numbers can be embedded in Q by

carrying out the following steps. Consider, any two-dimensional plane

containing the 1 = (1,0,0,0) axis. That is, let P be the set of

vectors of the form a + bn where n s a fixed unit vector of the form

x11,+ x2+ x3k and where a and b a e Hee to take on any scalar

(real number) values. to vector u = x11 +40 + x31(Aisa unit

vector if%x02 + x12 + *22 + x3
2

= 1.) -Show that multiplication of

quateritions in P,has the usual rules for the multiplication of

s Compile= numbers. In particular show that n
2

= -1.
NW

. *Exercise 2: Let ;Or= ai + bj + ck and v = xi + yj + zk. Show thatro N. AS

multiplication of.aand v as,quaternions yields ,

uv = -(u v) + (wuiyx v),
,

where indicates,the,dot or inner proddct and x denotes the usual

cross product in R
3

. Conclude that the following,two formulas

hold for ,vectors u and v in E
3

(1) u v = -1/2(uv + vu),

4
(2) u v = 11

AM
K (uy - v0),

M fa, `
where the products on the right denote quaternionic multiplication.

5. CONJUGATION AND NORM

Two'other operations, frequently encountered in work

with quatetnipns are. conjugation and norm 'Let

= a + bi + cj + dk. We define the conjugate of q to beh. N
Z"l' a - bi - cj - dk.

N.

of'q is defined to be the usual length of q in.The 'norm

R
4

:

q lg. 1 =Aa2 b2 d2 + d2)

4
9

Exercise 3: Show that the following properties hold for any

quaternions p and q:

(I), qc4 = 1,112 .
MIA

(2) ,77 = q.

(3) pq = qp

(4) 1Pcil
AN

p Notice that the third property says that the conjugate of a product

As the produc't of the conjugates in,the reverse order. This

reversal of order holds for productsof more than two quaternions as..

well. Notice also that the first property implies.that every q 0 0

-has a multiplicative inverse. For any q ¢ 0, there is a p so th a t
2

pq = 1 = qp; namely, p.= q / iql
N MM A

6. THE'QUATERNIONS ARE A SKEW:FIELD'

All the,,"normal" rules if arithmetic hold for

multiplication and addition in Q except commutativity of

multiplication. For example, ij =k A -k = ji. Here

are the basic properties of multiplication, those for

addition being the ones with which'you are alrea'ay II-

familiar from linear algebra:

Associativity: (pq)r = p(qr).
N M W , M M is

. ,Distributivity: p(q +r) = pq + pr
....... ..

,

U .. .. ...

(q+r)p = 40 + rp.
q . .. N MM, ,......

Multiplicative Identity: The quaternion 1 so fies
.

'
. 1p = p = pl

.
0 ON ',A pi.. 14N

for all quaternions p.
W -.,:.

Reciprocals: For any 4 A 0 there-is a p so that
..., .

qp4= 1 = pq.
MM M MM

Although associativity and distributiVity are somewhat

tedious to prove, their proofs follow quite directly from
O 10



-.the definition of'multiplication. fihe'existence of

reciprocals allows division although there_is ambiguity.

For exam111e,,,to divide q, by q2 we may multiply by

the reciprocal of q
2.either on the left'or the right.

And these may not yield the.same result since multiplica-
tIon isAnoi in general commutative. With these

the qUaternions Q-are called a skew-field.

.... m

, . If we think of,Q as the vector space R 4
, then for 2 [A2 .,c2

1,every real, scalar

q = a + bi + c + dk

a + b2 + c2 + d2 n
NV

rra /c2 t2 d2
n

LE

where Y = 42.+ b2 + c2 +d2 = lql.

r we have .

t Since (;) + 40 'r

...

r(a + bi,+ cj +dk3 = ri + rbi + rcj rdk.
IM NV -m AA AA

However, we may think of the scalar r as rl = (r,0,0,0),
in which case

r(a,+ bi + cj + dk) = ra + rbli +rclj + rdlk
. 04., MM

= ra + rbi + rcj + rdk
Aft

by the definition of multiplicationin Q. Thus we

arriveat,the same result whether we think if scalars,
as real numbers or as squater, "wi second,, third
and fourth coordinates ero.

quaternions.

/
the point (a/r, /(b2 + c 2 + d 2 )/r) lies on the unit circle
in R2. Thu's its coordinates are 6sos 0, sin 0 for some
angle 0. We have now arrived at a polar representation

for quaternions. Any quaternion q can be written in the
fform °

4f q = Im

- :

q (cos, 0 + sin a p)
, AN

for some angle e and some unit vector n in R3
.

Exercise 4: Find the polar representations of the following

POLAR REP ESENTATION OF UATERNIONS

For many purposes, when aling with complex number's,
the polar representation simplifies notation and calcu-

,.lation. Thus we denote a complex numbe, a+b/7-11by.,

r(cos 0 + sin 0 1I) where.

r = ./(a2- b2), ,cos 8 = a/r, in 8 = b/r.

'We can develop an analogous representation for quaternions.,
To see this let -q.= a + bi + cj + db.", and let h be the

unit vectof in RI in the same direction As Vi+ cj + dk.
AAI AN A4

This means that

bi + cj + dk
AA AS.n

M
c2 + d2

Now, write
13.

.(a) i+j+k

(b) I + j + k
.6

1 + k
AAJ. .

(cP.',.9+ 3j - 6k.
- A..

S. DEFINITION OF7HE-MULTIPLICATION LINEAR OPERATOR

- THE BASIC THEOREM

We now define a certain linear operator'on Q. Since
the space R that underlies Q is a. vector space, 'the

notion of a linear operator on Q makes'sense. It will
turn out that this operator i intimately related to .

rotations in ThisThis is the b sis for our gaining

insight into rotations by consi ering Q. To define this

17

,12



operator let q be a fixed-quaternion. Then define the
function M :Q 4- Q by the rule

M = qpq.
q w h../

That is, the image of 'p is obtained_byxmltiplying p

on.the left by q and on the right by We will call °

the function Mq a multiplication map.

THEOREM 1:' (a) .The multipl°icatiorl map Mq is a linear
operator on -Q; for any qUaternion q. (b)" If q1 and 12

are two quaternions, the.composite of M !followed by M
is q2 ql

M oM = M
21 i2 la2.2

Proof of (b):

We show that M. oM (p) = M (p)-for any quaternion
-;11 22 M 2122

p. This is accomplished'by;the following s'equence of
equflities:

M aM (p) Mq (q2P(1)
21 22 '. 1"'

-
(c) If a= ai +-1)1 + ck is ,in R3 (has first,Co-ordinate ,

A Proof of (c):-,

zer,o) then its image M
q id
(ul is Alst) in R3.' Hence M

q
, A quaternionA hai.,ifirst coordinate zero (is in R3)when restricted to 12."2 ,Thas its range in 4W3.

if and only if -11 = -111. We may therefore establish part
(c) of the theorem bir'shoWi:ng that if T1 = -u, thenProof of (a):
M
q
(u) = -M .(u): The argument is brief:.

\
...,

m

5,"To.show that M is linear, we must show for any -

/
q , PAMPA
W

'11(2222)9a

(2122)P(M1) by associativity

= (alcliT112.2) by Exercise' (3)

= Ma a (P)-
-1.12

two quaternions prand p2 and any scalar r..04t

Mq(21 P2) Mq(P1) Mq(E2)

and
.

,
V

M (rP ) = I'M (P ). .ecl 1 4 mi

But
. El + ,E,2) c.1..(El + Xdi

, 9. THE9MULTIPLICTON OPERATOR-
,,.I .

IS "REALLY",A ROTATIONq ( p 4 + i) A)
M "" ..... PA 4. AA

.
,;:.

2111i + 2E21 We may now develop the connection between the
multiplication operator Ma and rotations in R3 . Let 'N= M (P ) M (P ) ,

q ....1.1. q ,m..2 , n = ai +-bi,+ cli, be a vector' of unit length in O. So. , .A Ws ar,

by-the distributivity of multiplication.' Similarly, Mq for any angle 0, the quaterpion cos 0 + sin On. is a

= _ _
q u q by ExerciSe 3

= -quq if '5 = -u

=

-preserves scalar multiplication.

11,

1
13

quaternion of unit length..

14



,THEOREM 2: The multiplication map
.rThsin as a . *

.Therefore,Mcos 6 + si On;
3 3

. . .., .
7
o

,M(L,) = (cos
20

5in-6).LL + 2sin 6 cos 0 v
, . _

map fromR to R is.the rotation about axis.,n ofangle

26. That is, if u is in R3 then

M (u)cos-6 + sin On
by the trigonometric formulas for the sine and cosine of

. = cos(20) u + sin(20)

. is obtained by rotating U about M. by angle 20. twice an angle.

. ."

Proof :,
Exercise 5: Show that

We know from Theorem 1 that M. = Mcos
p + sin 0 is' M(v) u + cos(20) v

a linear map from R3 to R3. To check that it is the a nd . M(n)''= n,

required rotation we need only check its action on-a
eompletinA the proof of Theotem 2.basis for R3. . As in the introduction, we use a right hand

orthonormal basis u,v,n.
/4,4

There are three things to show, namely that

and

= cow()) u + sin(26) v,

= sin(2A) u 14-'cos(26)z,

'M(n) = n.

We will establish the fiikst of the three equations, and

leave the verification of the remaining two ti be*done

as Exercise S. 'Here is the argument that M(u) is what it

ought to be. First of all.

M1,9 = (cos 6 + sin 61)E (cos 6'- sin-61)

= (cos 0,u + sin Onu)(cos 6 sin-6 )

= 0520 u - sin
28

nun + sin 0 cos :6 (nu - tin
- .

But u Al, and
,n

form a right-hand.or arthonormal set. So

nu = u) +.(n x = 0 + v; 'y
, ON

and
A

-41

:.huu (nd)n = vn = -(v.hY + (v x u-
, 00.14 A NI NN

,By Formula (21 in Exercise

- un = 'Sp x-u = 2vMN/ MM Ar /.4
1

20
IS

10. APFLLCATIONS'TO ROTATIONS

We can now recast some of the results that we have -

obtajned about'the relation of the quaternion multiplica-

tion maps to rotations in R 3 -i n the ferm of a theorem,

for future reference. 1

.THEOREM Let-Rvybe a rotation -about a unit vector o4

in R by angle -61, and.let R2 be a rotation abou,t-a unit; -
..,

' vector42 by angle 62. Then

01- .
01

R = M , where q
i.

= cos y + sin 7-41a,
i A9.1,

.

and

R
2

= Mq2

Then the composition of the rotation R1 followed by R2 is

02 0
2

where q2 = cos -2- + sin µ2.

given by

R
2
0R-3= M OM = M

I
22 21 ;1294

Ili particular, the composition is itself a rotation, and

may be aphieved'by multiplication by the quaternion a a
l5. .2,,:

, '1', 76
nti
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ExaAple: Let 121 be -the rotation about the x-axis b;,:90°'
and let R

2.
be the rotation about the z-axis by 90°. TheThen

c11

1= cos 45° + sin 45° i = (1 + i)
.../ ,...,...... ,r2- ...

, .

q, = cos 45
0
4sin 45

0
1

k = --(I + k)
A.. v-2- ...., ..,,..4.

represent R1 and R2 respectively. Then R20121 is repre-'
sented by

2,291 2.(.1 k) (1 + i)

\
= + i + k + 1)/ , ow /NM

1 1

a 7.+
.

+ i + j + k)

/sr+ )54

T
i + j + k

= cos ai° + sin 60:-
VT

which is; According to Theorem 2, a 120° rotation about
the axis i + k.

x x -x

Figure 7. Composing rotations in. R3. If Ri is a 90°
'rotation about i, and if R2 is a 9-0° rotation about j, then
the compositionwR2F1R, is a 120° rotation about the Vector

ee,
i j.+ k.

.

ejt)
O

0

\

4110Exercise 6. In the example above, find the result of rotating first

about 4and.sen about i, rather than the reversq,. Show that this

result differ6;from the result in the example. Thus; composition of

rotations is not commutative.

Exercise 7. Find the result of rotating first about i by angle 180°

then about i + k by 120°, and finally about 3" by 90 °._

4

11. THE1ORIGINAL QUESTION-ANSWERED

In the introduction we aske whether it were possible
to find forL,Jas that allow a st ight orward way to find
the'result of- Amposing two rotations whose axes and
angles are given. It is certainly possible, and the

general procedure,as you.saw in the example of the pre-
vious section, and in the solutions of Exercises 6 and 7,
is the following: Let

and

R
1 denote a.rotation about n by angle 26,

PAP'

.R
2 denote a rotation about in by ankle 4.

To determine.the axis and angle of the rotation R2 o R
1,

we first take .

,
=cos 0 + sin 6 a and: ,T2 K cos sin et) m.

The norm of q
l

and q2 are both equal, to To see this,
let n a n,i + n,j + n

4
k. Then

1'111 = Ilcos20 + sin
2
O(R2 2

+ ,11.3! + n42 )

4os20 + sin20(1)

= 1.

The argument that 1q21 7 1 is similar, and we may conclude

17 that
18

0 r) 3

1



as well.

(M2Ml . I,,,q

2
lig I

The polar fornr of

5,2a1
Ia2V (cos

= (1) (cos p + sin p u)

= cos p + sin p u,

= 1

Mk

a41 is 'therefore

+ sin p u)

eit

where u is a unit vector .in WhenWhen we compare the

polar form of q2q1 with the expression

= (cos e + pin e m) (cos + sin 0 n)
'AL"'

4
cos e cos 8 +,sin 0 cos e n + sin 4. cos 8 m +

AO.

sin e salon m n
&A,

= (cos m cos 0 - sin e sin 0 mn)
As.

+ (sin 8 cos e n + sin e cos 8 m + sin e sin 0 m x n) ,

we see that

where

A% A,

u =
1
(sin 0 cos e n + sin-e cos 8 m + sin e sin 0 m n) ,
r

r = 'sin 0 cos e n +

We also seethat
0

cos p = (Cos 0 cos 0

and that

sin p = r.

These formulas for u and p give us the inforMation that we

seek about R2!) Ri.

sin e cos 8.m'+ sine sin m x nl.

sine sin 0 m n
PA.

Exercise 8. Suppose an object rotates about some fixed point in such

a way that a point on the object at LI.= bj + cic.at time 0 is at

u(t) = R
t
(u) at time t. Assume that RC is a rotation about a fiXed

-

axis n by angle 0 = 0(t). Show that the velocity of the point u(t)

at time t is u'(t) = 0'(t) nxu(t). (Note; As.111 calculus the
.* '

velocity of a vector u(t) = a(t)i b(t)j ,a(t)k it, its term -by -
Aft

term derivative. That is, u'(t) = a'(t)i b'(t)j + c'(t)k, provided'
MV M

, 19

the appropriate derivatives exist. Similarly, the derivative of a

quaternion function of t is its term- by-term derivative.) It may be

helpful to prove that the product rule holds'for differentiating

products.of quaternions: pfq Re with the corresponding

rule holdihg for products of,morathan two quaternions. Incidentally,

it is possible to generalize:te formula for ,91(t) to the case Where

the axis of rotation n also depends on t, as it does in a wobbly
Am

spinning top.

411°.

Exercise 9: We could have introduce& themiultiplication'operator

by means of two other operators,,the left and 'right multiplication

map's. Let q be a fixed quaternion, and define R
q

and L
q

(fdr right
V

and left multiplication) by

R
ci

(0) = pq-
L (p) = qp.

.

Then M
9
= L

9
0R

q in polar Thore"as

is unit vector

each of the basis

orthonormal basis

S

Interpret these two maps: (Hint: _First write

r(cos 0 + sin '0 n) where r is the norm of ti:find n

of R and L on
q q

elements 1, u, v, n where u, v, .n Win alright -hand

in R. Now calculate the effect

3
of R . Note that R and L are each linear.)

wNq
".

-I.-- -
12. HISSORICAL NOTE

The quaternions were invented by Wildiain HafflUton

(1805-65) , an English mathematician and.inpthemailcal "-

physicist. Hamilton digcovered the hencOmmutaave rules,_

for multiplic'ation of i, j, and k_ in a -flash &insight

, as he was walking over a

the first mathematician

argebraic system

His book Elem4ets.

written.at e ti

A.- A.,

bridge' neat Dublin. He Is 'perhaps

consider the 'possibility, of an

in w ich commutatilaity-i-ciiieS;not hold.

Qziaternions (Londjn, -,1866) -was

e when .linear algebra- wein.:4s birth

resting reading. -rbe -quaternions were

the first afge. ac system to have been studidd beyond the

complex The modern notation for vectors was "

'9.nd piovides

4



_introduced mainly through :ths'efforts of the American
physiCist J.W. Gibbs (1839-1903). There were several

emotionally bitter controversies between the early pro-
.,

laknents of quaternionic algebra and those of vd:ctor

algebra.

13. MODEL EXAMINATION

1. Find the follow4,4roducts

+ j + k)'
b. (-1 + i)(2 - j)

c. (i + j + k) 2
.

2. Find the multiplicative inverses of:

a., 1

b. 1 + i
AA

t c. 1 + i + j.
AA ;

Olo

6. Let u = cos 0 + sin 0'n and v = cos + sin:0 n,
where n is a unit vector in R

. Find u v 'and vu.M mm
Let RI and R2 be the rotations associated with uand
v, respectively. Verify that uv and vu bdth rreM MM MM
sent the rotation about n by angle 2(0+0, as they
must from purely geometric considerations'..

7. Let q = 1 + i. Find-the polar representation of q.

Let p = xi + yj + zk. Find qpq. Show that qpq is pm m-
' mum Mrotated about the x-axis by 90° followed by.an

expansion by factor 2. ,.

8. Let R be the rotation about i + j + k by angle 60\0

and S the rotation about + k by angle 90°.
4

,Find the axis and angle of rotation of RoS.

9:.-Let Wand S be the _rotations given in the previous
''problem. Let ,T be the rotationabout i + k by angle
240°. Find the axin4 angle of rotation of RoS0T.

3.° Let u = k - 2j and v = i + 2j. Calculate uv.and vu. 14. ANSWERS TO EXERCISES. tilbw,
Verify' the formulas in Exercise 2"(in the text) for
dot and Er, ots'produ

_PA
cts' of, u and V.

.

,
4

4

' 4. Let u =k'- 2j, v = i + 2j, and w = 1 - k. ShowIA As AA AA A, Ny
that ,.

-

U(Imqt.:=Auv)y u(v + w) = uv+ uw
. M MM "" PAM AA Ak SA MM 40,

.

thqSverifying associativity and.distiqbutivity in

_this special case. a
,-o+

S. "Find the polar representations of

a. i

b.
AA'

-c. + j
A

d, 2 + i j.
*44c

M A 21

1. Nown=xLi+xj
2 m

+xk. So

2 \

x 2 i2 + x 2j 2 + x 2k 2
1 2 3 ,A

,

r

+ x1x2(24 + ji) + xj*:;(11L+ ki) + x2x3(j 2c....+ kj

2 2= -x1 - x2 x3 + 0

oo

since n. -is- a-unit-- vector- (where the second tb 'the last equality1.4

follows from the rules for multiplication). Therefore, multiplica-
tion of any two elements of P yields

22

0"
ti



(a + bn)(c + dn) = ac + (bc + ad)n
AI

+ bdn2 \ by the definition of conjugaptPand Exercise 2. Also. M IA .o 1,.-.= (ac - bd) +- (i)c + ad)n. ' a. q p = ( A - 22 (a 1)µ v .4 A.

o This is the formula one obtains in complex multiplication with ' = Aa - aU - Au + Uu
M. AA MM.

replacing 1#1,. Similarly, addition of quaternions of the = aA - Au - all + I -(U u) + (U x u))
Ms M. M. M.for a + bn obeys the same rules as do compl:inumbers. The.. = aA - (u U) - Au - aU - (u x U)notation is convenient here:` Denotkng 1-71 by i suggests how to , p, ..... IA AA AA. or.

embed the complex numbers in Q as the first two coordinates. since u,U = U x u and (u x U) = -(U x u).
7'

M M.

) The last relation to be provedri-that 1pql = IPI '191 --fqllows in
2. Calculate if L. ..---. _

I,.... , ...

much the same way. Assume that p # 0. (Otherwise the assertion
9.4,

AIV - (ai + bj + ck)(xi + yj + zk) /- ? .is clear.)
4M M ."," a% AA OA M,

2 2el= axi2 +vbyj 2 x. czk2
JPI Id :' 513"M M. Ms. Me. M.M.

+ ayij + bxji + azik + cxki + bzjk + cykj\ 0... MM Au.. MM

Z(ax + by + cz) + (bz - (cx az)j + (ay - bx)k

-(u v)M M M

By interchanging the roles, of and v we find

vu = -(v u) + (v x 0).
.1.4A4 04 *A

Now add and subtract to obtain formulfs for the dot and cross
prOduct,, no ng that u v = v u and u x v = _--v x u. since r is the reciprocal to p.

,_ DA 1.4 M. .04 M M. 1P8 AV. 10 A.,
'

by the above

= p(pq)(qp)r s.(here r is the reciprocal to p

p- (pq)(pq)r by the above
M MM MM

=
I

2r
e.

= 1PC112-5r
At MW

(pqlMM

3. Let ei =oa + bi + cj dk; then
A.

qq = (a + bi + cj dk)(a bi cj - dk)
14 44 ,A M U.

2 2 2 2 12=a +b +c +d
silica all other Berms cancel. Similarly for qq- . To show the

MK
third relation let p = a + u where u bi + + dk and let

0.
"q ` A -I-. U where U Bi + Cj + DIC: That is, a and A are the

M, M. eo,

first coordinates of p and q. Now

!A AS.
(a f 22 (A + 2)

aA +-Ad.+ aU -4 uU
MM

aA + Au + aU
AV

[-(u U) A,(n x U)]
A.,V 0

aA - (u U) + Au + aU + (u x U)
M wo.

aA - (u U) - Au - aU - x U)
23

9tit 4. a.
i + j

i + j ,+ = 0 + )75E
M..s M /".

= )7-3-[cos 90° + sin 900(1 4. ;L.+ ill
A-

1,1 + 41]b. -1 + j + k = 2 [
-2- + --2-. M "

+ j +k
2[cos 60° + sin 6 0°,("'

,c.
A- VI 2

1 + k = 1-2" + k = 4504 sin45° 19.

29
. 24



d. 3 + 3j - 6k =
A".

=

) 1 1 7

34-

3j - 6k
"

j
1 l

3- A.4
- 21(.%

- + 3

Al.

cos 66° + sin 66°

[

+ /
6

-

m

)3.- I

.

bq

5. For ease of notation let c = cos 8 and s = sin 8. Then

14(a) =.(c + si,92,(c - s53)

= (c + s0(cn - sn2 )a AA a
= (c + sn)(s + cn) by Probled 1

tS s2n + t2n + scn
Pol

= cs + n - sc

= n,

111146p

since cos + sin28 = 1. The argulaent.4/0 ,t M(v) has the required

form is similar.

4 6. The quaternion that represents the rotation now is

(ps 45° + sin 45° i)(cos 45° + sin 45°,10

. 1
= + i)(1 + k)

-(1, - j + k)

"cos 60°
e04

t sin 60°

4

%This represents a rotation about the i - j + k axis_ by angle 120°.,.

S.

s 7. The 'r Cations are represented by

'and

S
q
1 1,

= co 90° 44in 90°
1

= i

i + j .
n.

I

= cos 60° + sin '60° '4

6
. 7(1 + i + j 7 k),

1

A IA AA AA IA

N

)
Thus the composition (note the order) is represented`by

1

A.'

= ---(1 + i

AA

j -
2/1

=.---1 (2j - 2k)i

211 AA
MM

=
1--(-k - j)"

k + j -k 1 -i)iM IA PA. AA AA

tb,

(-j - k)
= cos 90° + sin 90° ,

72-

which is a 180° rotation about the axis -j - k, or a 180° rotation

about j + k. "

A

8. First we note that if p = a ''+ bi + cj + dk and

q = A.+ Bi + Dk are each functions of t, then pq is the sum

-of terms such as baj = bCk. Differentiating this term gives

b',Ck + bC'k. Although the details are slightly teNpnrit is at

least easy to see.that (pq)' splits into two sets_ ?terms one of

which is the result of differentiating p, the other fro dif-

ferentiating q. And so the whole quaternioe (pq) split
AA 1.4. OA

p'q + pq1-. This product rule extends to products of more han44 M MM
two quaternions just as in single variable calculus. Nbw

u(t), = Rt(u) = q(t)uq (t) where q(t) = cos[1/28(t)] + sin[1/20(t)1

So ,the, elocity of the point originally at u at time 0 at t
Mr

cos 45° +.sin 45° j =-1 (1 + j). .

30
25

t' iSf

u'(t) = cr(t)uq(t) q(t)uq'(t)

by the product rule. But'e(t) ['i8'(i)](-sin[1/26(t)] 4

And similarly for q'(t). Notice that

q'(t) = 1/28'(t)[-sin(1/28) + cos(1/28)n]

'= 1/28'n[cos(1/28) t sin(1/28)n]
,

= 1/26'nq(t).
S:

IA

26



.r

Thui IV)

u1(t) = q'(t)uq(t) + q(t)uce(t)M MM M MM

= 1/20'Enci(t)uci(t) + q(t)uq(t)n- ]-
..,.

= 1/26'[nu(t) - u(t)n]

- 0' [11 x u(t)]

where the, second to the last; equality follows from the fact that

n = -n for n in R
3
and the last.,equalityfollows from ExerciAe 2.

.

9. For ease of notation set c = cos 0 and s =
.
sin 0. So q = r(c.+ sn),.

...= ...

' That L
9

and R
9

are linear operators on R4 = Q is easy to see in

the same way that Hq was seen to be linear. With u, v,n right-hand
M ... II,

orthonormal,yeca1culate(see Figure 3):

and

R (1) = lq = r(c + sn) = r(cl + sn),
.

=R. () = nq = r(cn + sn2) = x(-si + cn),
M.

.

R (u) = uo = r(cu + sun) = r(cu -sv),
9 . mt, m. ....... DJ. MM'

R (v) = vq = r(cv + svn) = r(eu + cv).
q M M M M

This shows Rq to be a rotation in two planes Up the plane spanned

by 1 and'ull angle'6, in the u,v plane by angle -0), followed by
AkOw

an expansion by the real factor -r. Similarly*

L q(1) = r(cl + sn),

w
Lq(a) = r(7s1 + cn),

..
Lq(a), = i(cu + sv),

and

9
r(-iu+-EV):

IA..

I

This shows Lq to be a rotation'in the 1,n plane by angle 0 and in

the
M
u,v plane by angle 0, followed by an expansion by r.

4

1.

2.

3.
,t

4.

5.

a. -1

b. -2

c. -3

a. 1

b. 2-1

e. 3-1(1

uv = 4

=

u(vw) =
MM

a. cos(90°)

b. vii

c. VT

d. l'6-

15. ANSWERS TO THE MODEL EXAMINATION

- j k

+ 2i + j -k
IM M. MI

(1

-

- 2i + j + 2k, vu = 4
m mm

-4, u x v = -21 + 2k., K m.

6 -3i -j - 2k = (uv)w,M m M. M.M.

+ sin(90°) i

-

[ cos(909) + sin(90°)Y]

+ 2i - j'- 2k,

u(v + w) = 5 - j + 3k.= uv + uw# 1.4.4 MM

approximately,

cos(90°) 4: sin(90°-

[ VT

[

cos(35°) +sin(35°)"
VT

6. uv = oos(6 + (p) + sin(0 + n = vu
MM M mov.

7.wo //[cos(45°) + sin(45°) qpq = 2xi - 2zj +
M mft. M m

. .

8. 121° rotation about 0.791 - 0.1 32k approximately.
. ,. ,

.
A.

_

9. 43° rotation about 0.5ri + 0.58j approximately.
MO w Mi

Q*
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- STUD NT FORM '1

.J.ektiqSt fOr Help

EDC/UMAP
55 Chapel St. '

Heuitqn,:MA 02166_ .

---- -
_--=----47-:-...-:---:---,'_:

Studq.ii,-- _,.----- s....O`ii-ici-.,t:! !Lio.,,A5.-0,/i6h,s,s0lafig'-patCaf- this unit, please fill

--:94,::,,If15_4i 47:4.--tor.ly.our..-juOtrucic-f-7--fpr -issiatIrri8a.. The in ormatton
-Ou---i0iyef'.-ii ...the-4400:0, revise_ the miff"; . .,

Your -Ham!
..-T--. ..---,---,7

. ....

:
-,.-,:,-.. .Unit-N6.-_

--

I

Instructor: Please indicate your reaolutio*-of the diffic4ty.4n this box.

Coirected errors An materials. List corrections here:
#

Gave student better explanation, example, or procedure than in unit.,
Give brief outline of your addition'-here:

40.

Assisted student in acquiring geheral learning and problem-solving

Askills
(not using examples from this unit.). .

.

0 1

Instructor's Signature,.

,I'lease,:use reverse if necessaiy.

'
7
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STUDENT FORM 2

Unit Questionnaire

"Unit No. Date

Return to:
EDC/UMAP
55 Chapel St.

\ Newton, MA-02160

Indtitution Course No:
,..
Cheek-41m choice for each question that comes closest to your personal opinion$ .

-=;7T.- How.useful was the amount of detail in the unit?.

Not enough detail to understand the unit
Unit would have been clearer with more detail
ApprOpriate amount of detail
Unit was occasionally too detailed, but thospOs not distracting
Too much detail; I was 9ften distratted

2. How helpful were the problem answers' 4..

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the.problems '

Sample solutions were too detailed; I didn't need them

3. Except for fulfilling -the prerequisites, how much did you use other sources (for -

example,-instructor, friends, or other books) in order to understand the unit?

A Lot iSomewhat A Little Not at al

4. How long was this unit in comparison to the amount of -time you generally spend on

a lesson (lecture and homewOrk assignment) in a typical math or science course?

Mtich Somewhat . AboUt Somewhat - Much

Longer Longer the'Same, Shorter Shorter,

_

5. Were any of the following parts of the mat confuslingor distracting.? (Check

as mazy as apply.) '

'rerequisites
Statement of skills and concepts (objective0

Paihraph headings
' Examples,

a.

Special,Assistance Supplement (if present)

Other, please explain

I r

1.
. -

Were any of the following parts of,thefunitpartitularly helpful? (Check as many

as apply.) ---
t -

Prerequisites", , .
".-

Statement of skills and concepti': (objectives)

.. .Examples -

Problems 4
Paragraph headings
Table of Contents
Speclal Assistance Supplement (if present)

Other, please6Xplain :

4`''''' ?lease describe anything in-the unit that youdid not particularly-like.
, . 1 ;.p

, -

re

.

,Please describe anything. that you found particularly he lpful. (Please use the back of

this sheet if you need more space.)

S../ ,)


